B SOLUTIONS

- (c): Two tangents can be drawn to a circle from a point lying outside the circle.
- 2. (a): Given, $\triangle ABC \sim \triangle PQR$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} \implies \frac{6}{3} = \frac{8}{PR} \implies PR = \frac{8 \times 3}{6} = 4$$

3. (d): We have, $3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$

Discriminant, $D = b^2 - 4ac$

where $a = 3\sqrt{3}, b = 10, c = \sqrt{3}$

$$D = (10)^2 - 4(3\sqrt{3})(\sqrt{3}) = 100 - 36 = 64$$

(c): Let P(x, y) be the midpoint of the line segment joining the points A(2, 2) and B(-4, -4).

$$\therefore x = \frac{2 + (-4)}{2} \text{ and } y = \frac{2 + (-4)}{2} = \frac{-2}{2} = -1 = \frac{-2}{2} = -1$$

- P(-1, -1) is the midpoint of AB
- 5. (c): No tangent can be drawn from a point lying inside the circle.
- **(b)**: We have, $\tan^2 45^\circ + \cot^2 45^\circ = (1)^2 + (1)^2 = 2$
- (d): We have, $121 = 11 \times 11$

 $1001 = 7 \times 11 \times 13$

Hence, H.C.F. of 121 & 1001 is 11.

- (c): In $\triangle ABC$, $DE \parallel AB$
- By basic proportionality theorem,

$$\frac{AE}{EC} = \frac{BD}{DC} \Rightarrow \frac{3}{y} = \frac{12}{x} \Rightarrow \frac{x}{y} = \frac{12}{3} = \frac{4}{1}$$

- $\Rightarrow x: y=4:1$
- **9.** (d): The given polynomial is $ax^2 6x 6$
- \therefore Product of its zeroes = $\frac{-6}{}$

⇒
$$\frac{-6}{a} = 4$$
 [: Product of zeroes = 4 (Given)]

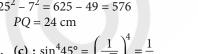
- 10. (c): PQ is a tangent to the circle.
- $\therefore OP \perp PO$

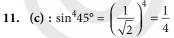
In right $\triangle OPQ$,

$$PQ^2 = OQ^2 - OP^2$$

$$= 25^2 - 7^2 = 625 - 49 = 576$$

 $\Rightarrow PQ = 24 \text{ cm}$





- **12. (b)**: Required area of ring = $1386 962.5 = 423.5 \text{ cm}^2$
- 13. **(b)**: We have, $\frac{AD}{DB} = \frac{3}{4}$ and $\frac{AE}{EC} = \frac{6}{8} = \frac{3}{4}$

$$\therefore \quad \frac{AD}{DB} = \frac{AE}{EC} \implies DE \mid\mid BC$$

[By converse of Basic Proportionality Theorem]

14. (b): Let r be the radius of hemisphere and conical part. Also, let *l* be the slant height of conical part.

Given, Surface area of hemisphere = Surface area of conical part

$$\Rightarrow 2\pi r^2 = \pi r l \Rightarrow 2r = l$$

$$\Rightarrow \frac{r}{l} = \frac{1}{2}$$

- Required ratio = 1:2
- **15. (b)**: We have, $\sin \alpha = 1/2$

Now, $3\sin\alpha - 4\sin^3\alpha$

$$= 3\left(\frac{1}{2}\right) - 4\left(\frac{1}{2}\right)^3 = \frac{3}{2} - \frac{4}{8} = \frac{3}{2} - \frac{1}{2} = 1$$

16. (d): Total number of observations = 10

$$Median = 27.5$$

$$\Rightarrow 27.5 = \frac{24 + x + 27 + x}{2}$$

$$\Rightarrow$$
 55 = 51 + 2x \Rightarrow 2x = 4 \Rightarrow x = 2

17. **(b)**: Given, $\sin\theta = \cos\theta$

$$\Rightarrow \frac{\sin \theta}{\cos \theta} = 1 \Rightarrow \tan \theta = 1$$

 \Rightarrow $\tan\theta = \tan 45^{\circ}$

[:: $tan 45^{\circ} = 1$]

- \Rightarrow $\theta = 45^{\circ}$
- 18. (a): Total surface area of solid = Curved surface area of cylinder + Curved surface area of hemisphere = $2\pi rh$ + $2\pi r^2 = 2\pi r(h+r)$
- **19.** (a): Given, P(E) = 0.45

We know, $P(\overline{E}) = 1 - P(E) = 1 - 0.45 = 0.55$

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

20. (a): Clearly, reason (R) is true.

Now, $a_7 - a_{11} = 300$

$$\Rightarrow (a+6d) - (a+10d) = 300 \qquad [\because a_n = a + (n-1)d]$$

 \Rightarrow -4d = 300 \Rightarrow d = -75, which is true.

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

21. Here,
$$\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$$
, $\frac{b_1}{b_2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c_1}{c_2} = \frac{5}{7}$

$$\therefore \quad \frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$$

Now, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ is the condition for which the given

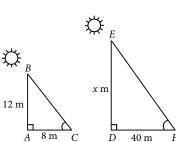
system of equations will represent parallel lines.

So, the given system of linear equations will represent a pair of parallel lines.

22. Let AB be the vertical stick and AC be its shadow. Also, let DE be the vertical tower and DF be its shadow.

Join BC and EF.

Let DE = x m



We have, AB = 12 m, AC = 8 m, and DF = 40 m.

In $\triangle ABC$ and $\triangle DEF$, we have

$$\angle A = \angle D = 90^{\circ}$$

 $\angle C = \angle F$

(Angular elevation of the sun)

 $\Delta ABC \sim \Delta DEF$

(By AA similarity criterion)

$$\Rightarrow \frac{AB}{DE} = \frac{AC}{DF} \Rightarrow \frac{12}{x} = \frac{8}{40} \Rightarrow \frac{12}{x} = \frac{1}{5} \Rightarrow x = 60$$

Hence, the height of the tower is 60 m.

23. Given, radius of cone $(r) = \frac{14}{2} = 7$ cm Height of cone (h) = 8 cm

Slant height
$$l = \sqrt{r^2 + h^2} = \sqrt{7^2 + 8^2} = \sqrt{113}$$
 cm

CSA of cone =
$$\pi r l = \frac{22}{7} \times 7 \times \sqrt{113} = 22\sqrt{113} \text{ m}^2$$

24. (a) Since, *A* and *B* lie on the circle having centre *O*.

$$\therefore$$
 $OA = OB$

[Each equal to radius]

$$\Rightarrow \sqrt{(4-2)^2 + (3-3)^2} = \sqrt{(x-2)^2 + (5-3)^2}$$

$$\Rightarrow$$
 2 = $\sqrt{(x-2)^2 + 4}$ \Rightarrow 4 = $(x-2)^2 + 4$

(Squaring both sides)

$$\Rightarrow$$
 $(x-2)^2 = 0 \Rightarrow x-2 = 0 \Rightarrow x = 2$

(b) Let P(x, y) be the required point.

Using section formula, we get

$$x = \frac{3(3) + 2(-4)}{3 + 2} = \frac{1}{5}, y = \frac{3(-8) + 2(6)}{3 + 2} = \frac{-12}{5}$$

$$\therefore \quad \left(\frac{1}{5}, \frac{-12}{5}\right) \text{ is the required point.}$$

25. (a) Consider a $\triangle ABC$ in which $\angle B = 90^{\circ}$ and $\angle BAC = \theta$.

Given,
$$\sin \theta = \frac{a}{b} = \frac{BC}{AC}$$

Let BC = ak units and AC = bk units

Using Pythagoras theorem, we have

$$AC^2 = AB^2 + BC^2 \implies b^2k^2 = AB^2 + a^2k^2$$

$$\Rightarrow AB^2 = b^2k^2 - a^2k^2$$

$$\Rightarrow$$
 $AB = \sqrt{b^2 - a^2}k$ units

$$\therefore \tan \theta = \frac{BC}{AB} = \frac{a}{\sqrt{b^2 - a^2}} \text{ and } \sec \theta = \frac{AC}{AB} = \frac{b}{\sqrt{b^2 - a^2}}$$

(b) Given, $\cot \theta = 8/15$

Now,
$$\frac{\sin^2\theta - \cos^2\theta}{2\sin\theta\cos\theta} = \frac{\frac{\sin^2\theta}{\sin^2\theta} - \frac{\cos^2\theta}{\sin^2\theta}}{\frac{2\sin\theta\cos\theta}{\sin^2\theta}}$$

 $\sin^2\theta$ (Dividing both numerator and denominator by $\sin^2\!\theta)$

$$= \frac{1 - \cot^2 \theta}{2 \cot \theta} \qquad \left(\because \frac{\cos \theta}{\sin \theta} = \cot \theta\right)$$

$$= \frac{1 - (8/15)^2}{2(8/15)} = \left(1 - \frac{64}{225}\right) \times \frac{15}{16} = \frac{161}{225} \times \frac{15}{16} = \frac{161}{240}$$

26. Let the required point be P(x, 0)

Since, point P(x, 0) is equidistant from points A(2, -5) and B(-2, 9).

$$\therefore PA = PB \Rightarrow PA^2 = PB^2$$

$$\Rightarrow$$
 $(2-x)^2 + (-5-0)^2 = (-2-x)^2 + (9-0)^2$

$$\Rightarrow$$
 4 + x^2 - 4 x + 25 = 4 + x^2 + 4 x + 81

$$\Rightarrow$$
 8 $x = -56 \Rightarrow x = -7$

Thus, the required point is (-7, 0).

Now, the distance between P(-7, 0)

and the origin =
$$\sqrt{(0+7)^2 + (0-0)^2}$$

$$=\sqrt{49+0} = 7$$
 units

27. Since $DE \parallel BC$, we have $\angle AED = \angle ACB$

[Corresponding angles]

and
$$\angle ADE = \angle ABC$$

[Corresponding angles]

$$\therefore$$
 $\triangle ADE \sim \triangle ABC$

[By AA-Similarity]

So, the corresponding sides of $\triangle ADE$ and $\triangle ABC$ are proportional.

$$\therefore \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC} \qquad ...(i)$$

Now,
$$\frac{AD}{AB} = \frac{DE}{BC} \implies \frac{2}{4.5} = \frac{4}{BC}$$

[::
$$AB = (AD + BD) = 4.5 \text{ cm}$$
]

$$\Rightarrow BC = \left(\frac{4 \times 4.5}{2}\right) \text{cm} = 9 \text{ cm}$$

Again,
$$\frac{DE}{BC} = \frac{AE}{AC}$$
 [From (i)]

$$\Rightarrow \frac{4}{9} = \frac{3.2}{AC}$$
 [: BC = 9 cm]

$$\Rightarrow$$
 $AC = \left(\frac{9 \times 3.2}{4}\right) \text{cm} = 7.2 \text{ cm}$

Hence, AC = 7.2 cm and BC = 9 cm

28. (a) We have,
$$\sin (A + 2B) = \frac{\sqrt{3}}{2}$$

$$\Rightarrow$$
 $\sin (A + 2B) = \sin 60^{\circ}$

$$\left[\because \sin 60^{\circ} = \frac{\sqrt{3}}{2} \right]$$

$$\Rightarrow A + 2B = 60^{\circ}$$

And
$$\cos(A + 4B) = 0$$

$$\Rightarrow$$
 cos $(A + 4B) = \cos 90^{\circ}$

$$\Rightarrow \cos(A + 4B) = \cos 90^{\circ}$$
$$\Rightarrow A + 4B = 90^{\circ}$$

[::
$$\cos 90^{\circ} = 0$$
] ...(ii)

$$2B = 30^{\circ} \implies B = 15^{\circ}$$

Putting the value of *B* in (i), we get

$$A + 2(15^{\circ}) = 60^{\circ}$$

$$\Rightarrow A + 30^{\circ} = 60^{\circ} \Rightarrow A = 30^{\circ}$$

(b) L.H.S. =
$$\frac{1}{\csc \theta - \cot \theta} - \frac{1}{\sin \theta}$$

$$= \frac{1}{(\csc \theta - \cot \theta)} \times \frac{(\csc \theta + \cot \theta)}{(\csc \theta + \cot \theta)} - \csc \theta$$

$$= \frac{\csc \theta + \cot \theta}{\csc^2 \theta - \cot^2 \theta} - \csc \theta$$

$$= \csc \theta + \cot \theta - \csc \theta$$

$$[\because \csc^2 \theta - \cot^2 \theta = 1]$$

=
$$\csc \theta$$
 – $(\csc \theta$ – $\cot \theta$)

$$= \frac{1}{\sin \theta} - \frac{(\csc \theta - \cot \theta)}{1} \times \frac{(\csc \theta + \cot \theta)}{(\csc \theta + \cot \theta)}$$

$$= \frac{1}{\sin \theta} - \frac{\csc^2 \theta - \cot^2 \theta}{\csc \theta + \cot \theta} = \frac{1}{\sin \theta} - \frac{1}{\csc \theta + \cot \theta}$$
$$= R.H.S.$$

29. Let
$$p(x) = 2x^2 + 3x - k$$

Since, one of the zeroes of p(x) is $\frac{1}{2}$. [Given]

$$\therefore p\left(\frac{1}{2}\right) = 0 \implies 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) - k = 0$$

$$\Rightarrow \frac{1}{2} + \frac{3}{2} - k = 0 \Rightarrow k = 2$$

Let the other zero be α .

Now, product of zeroes $=\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

$$\Rightarrow \ \alpha \times \frac{1}{2} = -\frac{k}{2} = -\frac{2}{2} = -1 \Rightarrow \alpha = -2$$

Sum of *k* and the other zero = 2 + (-2) = 0

30. (a) Seven years ago, let Swati's age be *x* years. Then, Varun's age was $5x^2$ years.

Swati's present age = (x + 7) years and

Varun's present age = $(5x^2 + 7)$ years

Three years hence, we have

Swati's age = (x + 7 + 3) years = (x + 10) years

Varun's age = $(5x^2 + 7 + 3)$ years = $(5x^2 + 10)$ years

According to question, $x + 10 = \frac{2}{5} (5x^2 + 10)$ $\Rightarrow x + 10 = 2x^2 + 4$

$$\Rightarrow$$
 $x + 10 = 2x^2 + 4$

$$\Rightarrow$$
 $2x^2 - x - 6 = 0 \Rightarrow 2x^2 - 4x + 3x - 6 = 0$

$$\Rightarrow$$
 2x(x-2) + 3 (x-2) = 0 \Rightarrow (2x + 3) (x - 2) = 0

$$\Rightarrow x-2=0$$
 [: $2x+3\neq 0$ as $x>0$]

$$\Rightarrow x = 2$$

Hence, Swati's present age = (2 + 7) years = 9 years Varun's present age = $(5 \times 2^2 + 7)$ years = 27 years

(b) We have,
$$\frac{x+4}{x-4} + \frac{x-4}{x+4} = \frac{10}{3}$$
 ...(i

Putting $\frac{x+4}{x-4} = y$ in (i), we get

$$y + \frac{1}{y} = \frac{10}{3} \Rightarrow \frac{y^2 + 1}{y} = \frac{10}{3} \Rightarrow 3y^2 + 3 = 10y$$

$$\Rightarrow$$
 3 $y^2 - 10y + 3 = 0 \Rightarrow 3y^2 - 9y - y + 3 = 0$

$$\Rightarrow 3y^2 - 10y + 3 = 0 \Rightarrow 3y^2 - 9y - y + 3 = 0$$

\Rightarrow 3y(y - 3) - 1(y - 3) = 0 \Rightarrow (y - 3) (3y - 1) = 0

$$\Rightarrow$$
 $y = 3$ or $y = 1/3$

Now,
$$\frac{x+4}{x-4} = 3 \Rightarrow x+4 = 3x-12$$

$$\Rightarrow 2x = 16 \Rightarrow x = 8$$

And
$$\frac{x+4}{x-4} = \frac{1}{3} \Rightarrow 3x+12 = x-4$$

$$\Rightarrow 2x = -16 \Rightarrow x = -8$$

So, required roots are ± 8 .

31. Let *BC* be the height of the tower and *CD* be the height

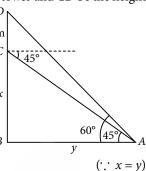
of the pole. Let BC = x m and AB = y m

Now, in $\triangle ABC$,

$$\tan 45^\circ = \frac{BC}{AB} \implies 1 = \frac{x}{y}$$

 $\implies y = x \quad ... (i)$

$$\tan 60^{\circ} = \frac{BD}{AB} \Rightarrow \sqrt{3} = \frac{x+5}{y}$$



$$\Rightarrow x+5 = \sqrt{3}y \Rightarrow \sqrt{3}x = x+5$$

$$\Rightarrow (\sqrt{3} - 1)x = 5 \Rightarrow x = \frac{5}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{5(\sqrt{3} + 1)}{2}$$

$$=\frac{5(2.732)}{2}$$
 = 6.83 m

Hence, height of the tower = 6.83 m

32. Time taken by *A* to complete 1 round

$$= \frac{1980}{330} = 6 \text{ mins}$$
Time taken by *B* to complete 1 round

$$=\frac{1980}{198}=10 \text{ mins}$$

 $= \frac{1980}{198} = 10 \text{ mins}$ Time taken by C to complete 1 round

$$=\frac{1980}{220} = 9 \text{ mins}$$

Required number of minutes, when the three cyclists will meet at the starting point again is LCM (6, 10, 9) minutes.

$$6 = 2 \times 3, 10 = 2 \times 5 \text{ and } 9 = 3 \times 3$$

$$\therefore$$
 LCM (6, 10, 9) = 2 × 5 × 3² = 90 minutes

So, they will meet after 90 minutes or 1 hour 30 mins.

33. (a) Let a_1 , a_2 be the first term and d_1 , d_2 be common difference of the two A.P.'s respectively.

Given, ratio of sum of first *n* terms = $\frac{1}{4n+27}$

$$\therefore \frac{\frac{n}{2} \left\{ 2a_1 + (n-1) d_1 \right\}}{\frac{n}{2} \left\{ 2a_2 + (n-1) d_2 \right\}} = \frac{7n+1}{4n+27}$$
 ...(i)

$$\Rightarrow \frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{7n+1}{4n+27}$$

$$\Rightarrow \frac{a_1 + \left(\frac{n-1}{2}\right)d_1}{a_2 + \left(\frac{n-1}{2}\right)d_2} = \frac{7n+1}{4n+27}$$

Putting $\frac{n-1}{2} = 8$, we get

$$\frac{a_1 + 8d_1}{a_2 + 8d_2} = \frac{7(17) + 1}{4(17) + 27} \quad \left\{ \because \quad \frac{n - 1}{2} = 8 \implies n = 17 \right\}$$

$$\Rightarrow \frac{a_1 + 8d_1}{a_2 + 8d_2} = \frac{120}{95} = \frac{24}{19}$$

$$\therefore$$
 Ratio of 9th terms = $\frac{a_1 + 8d_1}{a_2 + 8d_2} = \frac{24}{19}$

OR.

(b) Let *a* be the first term and *d* be the common difference of given A.P.

According to the question,

Sara's expression,
$$S_1 = S_n = \frac{n}{2} [2a + (n-1)d]$$
 ...(i)

Lara's expression,
$$S_2 = S_{2n} = \frac{2n}{2} [2a + (2n-1)d]$$
 ...(ii)

and Maira's expression
$$S_3 = S_{3n} = \frac{3n}{2} [2a + (3n-1)d]$$
 ...(iii)

Now,
$$S_2 - S_1 = \frac{2n}{2} [2a + (2n-1)d] - \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2\{2a + (2n-1)d\} - \{2a + (n-1)d\}]$$

$$= \frac{n}{2} [2a + (3n - 1)d]$$

$$\therefore 3(S_2 - S_1) = \frac{3n}{2} [2a + (3n - 1)d]$$

$$\Rightarrow 3(S_2 - S_1) = S_3$$
 [Using (iii)]

or
$$S_3 = 3(S_2 - S_1)$$

So, the relation Laira was asked to prove is true.

34. (a) If two circles touch externally, then the distance between their centres is equal to the sum of their radii. Let the radii of the two circles be r_1 cm and r_2 cm respectively. Let C_1 and C_2 be the centres of the given circles.

Then,
$$r_1 + r_2 = C_1 C_2$$

$$\Rightarrow$$
 $r_1 + r_2 = 14$

...(i)
$$[:: C_1C_2 = 14 \text{ cm (Given)}]$$

It is given that the sum of the areas of two circles is equal to $130 \,\pi \, \text{cm}^2$.

$$\pi r_1^2 + \pi r_2^2 = 130\pi$$

$$\Rightarrow r_1^2 + r_2^2 = 130$$
 ...(ii)

Now,
$$(r_1 + r_2)^2 = r_1^2 + r_2^2 + 2r_1r_2$$

$$\Rightarrow$$
 14² = 130 + 2 $r_1 r_2$ [Using (i) and (ii)]

$$\Rightarrow$$
 196 – 130 = $2r_1r_2$

$$\Rightarrow$$
 66 = $2r_1r_2$

$$\Rightarrow r_1 r_2 = 33$$
 ...(iii)

Now,
$$(r_1 - r_2)^2 = r_1^2 + r_2^2 - 2r_1r_2$$

$$\Rightarrow$$
 $(r_1 - r_2)^2 = 130 - 2 \times 33$ [Using (ii) and (iii)]

$$\Rightarrow (r_1 - r_2)^2 = 64$$

$$\Rightarrow r_1 - r_2 = \pm (8)$$
 ...(iv)

Solving (i) and (iv), we get $r_1 = 11$ and $r_2 = 3$

or $r_1 = 3$ and $r_2 = 11$

Hence, the radii of the two circles are 11 cm and 3 cm.

OF

(b) Let R m and r m be the radius of outer and inner semi-circular plot.

Given, perimeter of plot = $\frac{163 \frac{3}{7} \text{ m}}{5 \text{ m}}$

$$\Rightarrow (\pi + 2)r = \frac{1144}{7}$$

$$\Rightarrow \left(\frac{22}{7} + 2\right) r = \frac{1144}{7} \Rightarrow \frac{36}{7} r = \frac{1144}{7} \Rightarrow r = \frac{1144}{36} = \frac{286}{9}$$

$$\therefore R = \frac{286}{9} + 5 = \frac{286 + 45}{9} = \frac{331}{9}$$

(i) Area of the path =
$$\frac{\pi}{2}(R^2 - r^2) = \frac{22}{2 \times 7}(R + r)(R - r)$$

$$= \frac{11}{7} \left(\frac{331}{9} + \frac{286}{9} \right) \left(\frac{331}{9} - \frac{286}{9} \right) = \frac{11}{7} \times \frac{617}{9} \times \frac{45}{9} = 538.65 \text{ m}^2$$

(ii) Cost of gravelling 1 m² path = ₹ 12

(iii) Area of the plot =
$$\pi r^2 = \left(\frac{22}{7} \times \frac{286}{9} \times \frac{286}{9}\right) \text{m}^2$$

= 3173.74 m²

Now, cost of turfing 1 m² plot = $\stackrel{?}{\stackrel{?}{=}} \frac{45}{100}$

.. Cost of turfing 3173.74 m² plot =
$$\mathcal{E}\left(\frac{45}{100} \times 3173.74\right)$$

= \mathcal{E} 1428.183

35. Let the missing frequency be *f*.

Class Interval	Frequency (f_i)	Class Mark (x _i)	$f_i x_i$
11-13	3	12	36
13-15	6	14	84
15-17	9	16	144
17-19	13	18	234
19-21	f	20	20 <i>f</i>
21-23	5	22	110
23-25	4	24	96
	$n = \sum f_i$ = 40 + f		$\sum f_i x_i$
	= 40 + f		=704 + 20f

Mean of the data = ₹ 18

[Given]

$$\Rightarrow \frac{\sum f_i x_i}{n} = 18 \Rightarrow \frac{704 + 20f}{40 + f} = 18$$

$$\Rightarrow$$
 704 + 20 $f = 18 \times (40 + f)$

$$\Rightarrow$$
 20 f - 18 f = 720 - 704 \Rightarrow 2 f = 16 \Rightarrow f = 8

36. (i) If $\triangle AED$ and $\triangle BEC$, are similar by SAS similarity rule, then their corresponding sides are proportional.

$$\therefore \quad \frac{AE}{BE} = \frac{DE}{CE} = \frac{AD}{BC}$$

(ii)
$$BC = \sqrt{CE^2 + EB^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36}$$

$$=\sqrt{100} = 10 \text{ cm}$$

(iii) (a) Since $\triangle ADE$ and $\triangle BCE$ are similar

$$\therefore \frac{\text{Perimeterof } \Delta ADE}{\text{Perimeter of } \Delta BCE} = \frac{AD}{BC}$$

$$\Rightarrow \frac{1}{2} = \frac{AD}{10} \Rightarrow AD = 5 \text{ cm}$$

$$\Rightarrow \frac{1}{2} = \frac{ED}{8} \Rightarrow ED = 4 \text{ cm}$$

37. Sample space (*S*) = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

$$\Rightarrow n(S) = 8$$

(i) Let A be the event of getting atmost one tail.

$$\therefore$$
 $A = \{HHH, HHT, HTH, THH\}$

$$\Rightarrow n(A) = 4$$

$$\therefore \quad \text{Required probability } = \frac{4}{8} = \frac{1}{2}$$

(ii) Let B be the event of getting exactly 1 head.

$$\therefore$$
 $B = \{HTT, THT, TTH\}$

$$\Rightarrow n(B) = 3$$

$$\therefore \quad \text{Required probability } = \frac{3}{8}$$

(iii) (a) Let *C* be the event of getting exactly 3 tails.

$$\therefore$$
 $C = \{TTT\} \Rightarrow n(C) = 1$

$$\therefore$$
 Required probability $=\frac{1}{8}$

Let *D* be the event of getting atmost 3 heads.

$$\therefore$$
 D = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

$$\Rightarrow n(D) = 8$$

$$\therefore$$
 Required probability = $\frac{8}{8}$ = 1

OR

(b) Let *E* be the event of getting atleast two heads.

$$\therefore$$
 $E = \{HHT, HTH, THH, HHH\}$

$$\Rightarrow n(E) = 4$$

$$\therefore$$
 Required probability $=\frac{n(E)}{n(S)} = \frac{4}{8} = \frac{1}{2}$

38. (i) The zeroes of the polynomial are the points which intersects x-axis i.e., whose y co-ordinate is 0.

(ii) Sum of zeroes of quadratic polynomial $ax^2 + bx + c$, $a \ne 0$ is $\frac{-b}{a}$.

(iii) (a) To have rational roots, discriminant ($D = b^2 - 4ac$) should be > 0 and also a perfect square.

Here, $D = (-5)^2 - 4(1)(6) = 25 - 24 = 1$, which is a perfect square. Thus given equation has rational roots.

Now, we have
$$x^2 - 5x + 6 = 0 \Rightarrow x^2 - 3x - 2x + 6 = 0$$

$$\Rightarrow$$
 $(x-3)(x-2)=0 \Rightarrow x=3,2$

OI

(b) To have equal roots, discriminant $(D = b^2 - 4ac)$ should be = 0

Here,
$$D = 6^2 - 4(9)(1) = 36 - 36 = 0$$

Given,
$$9x^2 + 6x + 1 = 0$$

$$\Rightarrow$$
 $9x^2 + 3x + 3x + 1 = 0 \Rightarrow 3x(3x + 1) + 1(3x + 1) = 0$

$$\Rightarrow$$
 $(3x+1)(3x+1) = 0 \Rightarrow x = \frac{-1}{3}, \frac{-1}{3}.$

