SOLUTIONS

(b): Since tangents drawn from an external point to a circle are equal in length.

$$\therefore PQ = PT = 7 \text{ cm and } RQ = RS = 4 \text{ cm}$$
Now, $RP = PQ - RQ = (7 - 4) \text{ cm} = 3 \text{ cm}$

2. (b): Given,
$$\triangle ABC \sim \triangle PQR$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} \Rightarrow \frac{z}{3} = \frac{8}{6} = \frac{4\sqrt{3}}{V}$$

$$\Rightarrow \frac{z}{3} = \frac{8}{6}$$
 and $\frac{8}{6} = \frac{4\sqrt{3}}{v}$

$$\Rightarrow$$
 $z = \frac{24}{6} = 4$ and $y = \frac{24\sqrt{3}}{8} = 3\sqrt{3}$

$$\Rightarrow$$
 $y + z = 4 + 3\sqrt{3}$

- 3. (b): We know, graph of linear polynomial is a straight line. Only in option (b), the graph is a straight line. So, it represents linear polynomial.
- (c): Since AD is the median, so D is the mid point of BC.

$$\therefore \quad \text{Coordinates of } D = \left(\frac{6+1}{2}, \frac{5+4}{2}\right) \text{ i.e., } \left(\frac{7}{2}, \frac{9}{2}\right)$$

(a): The given equation is $x^2 + 5x + 5 = 0$.

Here,
$$a = 1$$
, $b = 5$ and $c = 5$

$$D = b^2 - 4ac = 25 - 4 \times 1 \times 5 = 5$$

The roots are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-5 + \sqrt{5}}{2}$$
 and $\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-5 - \sqrt{5}}{2}$

6. (d): Let *MN* be the length of the ladder. In right-angled triangle MNB,

$$\cos 60^{\circ} = \frac{BN}{MN} \implies \frac{1}{2} = \frac{2}{MN}$$

$$\Rightarrow$$
 $MN = 2 \times 2 = 4 \text{ m}$

Therefore, the length of the ladder is 4 m.

7. (a): We have,

$$\frac{\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ + 5}{\csc^2 30^\circ + \sec^2 60^\circ - \cot^2 30^\circ}$$

$$=\frac{(\sqrt{3})^2 + 4\left(\frac{1}{\sqrt{2}}\right)^2 + 3\left(\frac{2}{\sqrt{3}}\right)^2 + 5}{2 + 2 - (\sqrt{3})^2} = \frac{3 + 2 + 4 + 5}{4 - 3} = 14$$

(a): Here, diameter = 8 cm and θ = 90°

$$\therefore \text{ Area of sector} = \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{90^{\circ}}{360^{\circ}} \times \pi \left(\frac{8}{2}\right)^2 = 4\pi \text{ cm}^2.$$

(a): Total number of possible outcomes = 6 Favourable outcomes of getting multiple of 2 are {2, 4, 6} i.e., 3 in number.

$$\therefore \quad \text{Required probability } = \frac{3}{6} = \frac{1}{2}$$

10. (b): We have, $k^2 + 4k + 3 = 0 \implies k^2 + 3k + k + 3 = 0$ $k(k+3) + 1(k+3) = 0 \implies (k+3)(k+1) = 0$

$$\Rightarrow k(k+3)+1(k+3)=0=$$

$$\Rightarrow k=-1,-3$$

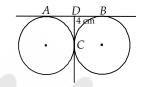
11. (c) :
$$AD = CD$$
 and $BD = CD$

$$AB = AD + BD$$

$$\Rightarrow AB = CD + CD$$

$$= 2CD$$

$$= 2 \times 4 = 8 \text{ cm}$$



12. (b): Curved surface area of a hemisphere is $2\pi r^2$ and if, we join two solid hemispheres along their bases, then we get a solid sphere.

Hence, the curved surface area of new solid $=2\pi r^2+2\pi r^2=4\pi r^2$

13. (c) : Here, n = 6, which is even,

$$\therefore \quad \text{Median} = \frac{1}{2} \left(\left(\frac{6}{2} \right)^{\text{th}} \text{term} + \left(\frac{6}{2} + 1 \right)^{\text{th}} \text{term} \right)$$

$$\Rightarrow$$
 16 = $\frac{1}{2}$ (3rd term + 4th term)

$$\Rightarrow$$
 32 = x - 2 + x \Rightarrow 2 x = 34 \Rightarrow x = 17

14. (b): First monthly installment = ₹ 1000 Second monthly installment = ₹(1000 + 50) = ₹ 1050 Third monthly installment = ₹(1050 + 50) = ₹1100and so on.

1000, 1050, 1100, forms an A.P., where a = 1000, d = 50, n = 30

Now,
$$a_n = a + (n - 1)d$$

$$\Rightarrow a_{30} = 1000 + (30 - 1)50 = 1000 + 1450 = 2450$$

∴
$$30^{\text{th}}$$
 installment = ₹ 2450

15. (a): In $\triangle ABC$, $\angle B = 90^{\circ}$. Let $\angle ACB = \theta$

$$\therefore \tan \theta = \frac{AB}{BC} = \frac{4}{4\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 tan θ = tan 30° \Rightarrow θ = 30°

Hence, the angle of depression from *A* is 30°.

16. (d): Perimeter of
$$\triangle ABC = (9 + 6 + 7.5)$$
 cm = 22.5 cm.

Let the perimeter of ΔDEF be p cm.

Given $\Delta DEF \sim \Delta ABC$

$$\Rightarrow \frac{\text{Perimeter of } \Delta DEF}{\text{Perimeter of } \Delta ABC} = \frac{EF}{BC} \Rightarrow \frac{p}{22.5} = \frac{8}{6}$$

$$\Rightarrow p = \frac{22.5 \times 8}{6} = \frac{225 \times 8}{60} = 30$$

17. (c): Perimeter of the figure

$$= BC + AB + CD + \text{length of arc } \widehat{AED}$$

=
$$14 + 18 + 18 + \pi r = 50 + \frac{22}{7} \times \frac{14}{2} = 72 \text{ cm}$$

18. (b): Total number of possible outcomes = 10 Sum of the given numbers

$$= 2 + 4 + 4 + 6 + 6 + 6 + 8 + 8 + 8 + 8 = 60$$

$$\therefore \text{ Average} = \frac{\text{Sum of all the given numbers}}{\text{Total numbers}} = \frac{60}{10} = 6$$

: 6 occurs 3 times.

So, favourable number of outcomes = 3

:. Required probability = 3/10

19. (d): Let breadth of a hall be x and height = 5x Length = $8 \times 5x = 40x$

 \therefore Volume of hall = $x \times 5x \times 40x = 200x^3$

But, volume of hall = 12.8 m^3

$$\therefore 200x^3 = 12.8 \text{ m}^3 \Rightarrow x^3 = \frac{12.8}{200} = \frac{8}{125}$$

 \Rightarrow x = 0.4 m = 40 cm

:. Assertion (A) is false but reason (R) is true.

20. (c) : We have, OR = 3 cm, PR = 5 and PQ = 4

$$\therefore \quad \sin R = \frac{PQ}{PR} = \frac{4}{5}$$

So,
$$\sin^2 R + \csc R = \left(\frac{4}{5}\right)^2 + \frac{1}{4/5} = \frac{16}{25} + \frac{5}{4} = \frac{64 + 125}{25 \times 4} = \frac{189}{100}$$

Also, $\operatorname{cosec} A = (\sin A)^{-1}$

:. Assertion (A) is true but reason (R) is false.

21. The given polynomial is $x^2 - p(x+1) + c$ i.e., $x^2 - px - p + c$

$$\therefore \quad \text{Sum of zeroes} = \alpha + \beta = \frac{-(-p)}{1} = p$$

and product of zeroes = $\alpha\beta = \frac{-p+c}{1} = -p+c$

Now, $(\alpha + 1)(\beta + 1) = 0 \Rightarrow \alpha\beta + \alpha + \beta + 1 = 0$

$$\Rightarrow$$
 $-p+c+p+1=0 \Rightarrow c+1=0$

 \therefore c = -1

22. (a) Here, a = 16, b = -24, c = -1

$$D = b^2 - 4ac = (-24)^2 - 4(16)(-1) = 576 + 64$$
$$= 640 > 0 : \sqrt{D} = \sqrt{640} = \sqrt{64 \times 10} = 8\sqrt{10}$$

By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{24 \pm 8\sqrt{10}}{32} = \frac{3 \pm \sqrt{10}}{4}$$

Therefore, the roots are $\frac{3+\sqrt{10}}{4}$ and $\frac{3-\sqrt{10}}{4}$

OR

(b) We have, $(k-5)x^2 + 2(k-5)x + 2 = 0$

Given equation has equal roots.

 \therefore Discriminant, D = 0

$$\Rightarrow$$
 $[2(k-5)]^2 - 4(k-5)(2) = 0$

$$\implies k^2 + 25 - 10k - 2k + 10 = 0$$

$$\Rightarrow k^2 - 12k + 35 = 0 \Rightarrow k^2 - 7k - 5k + 35 = 0$$

$$\Rightarrow (k-7)(k-5) = 0 \Rightarrow k=7 \qquad [\because k \neq 5]$$

23. Let the given points are A(-2, 5), B(7, 10) and C(3, -4).

Then,
$$AB = \sqrt{(7+2)^2 + (10-5)^2}$$

$$=\sqrt{81+25} = \sqrt{106}$$
 units

$$AC = \sqrt{(3+2)^2 + (-4-5)^2}$$

$$=\sqrt{25+81}=\sqrt{106}$$
 units

$$\Rightarrow AB = AC$$

Also,
$$BC = \sqrt{(3-7)^2 + (-4-10)^2} = \sqrt{16+196}$$

$$=\sqrt{212}$$
 units

B(7, 10)

A(-2, 5)

C(3, -4)

Since, $AB^2 + AC^2 = 106 + 106 = 212 = BC^2$

 $\therefore \Delta ABC$ is a right angled isosceles triangle.

24. We have,
$$2472 = 2^3 \times 3 \times 103$$

$$1284 = 2^2 \times 3 \times 107$$

 $N = 2 \times 2 \times 3 \times x$, where x is a natural number

[: HCF = 12 : 2, 2, 3 will be common values]

$$\therefore \quad LCM = 2 \times 2 \times 2 \times 3 \times x \times 103 \times 107 \qquad \dots ($$

But LCM = $2^3 \times 3^2 \times 5 \times 103 \times 107$ [Given] ...(ii)

Equating (i) and (ii), we get x = 15

$$N = 2^2 \times 3 \times 15 = 180$$

25. (a) Let radius of hemisphere = r cm

Total surface area of hemisphere = 462 cm^2

$$\Rightarrow 3\pi r^2 = 462 \Rightarrow r^2 = \frac{462 \times 7}{3 \times 22} = 49 \Rightarrow r = 7$$

:. Volume of hemisphere

$$=\frac{2}{3}\pi r^3 = \frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 = 718.67 \text{ cm}^3$$

OR

(b) Volume of cubical ice cream brick = $(22)^3$ cm³

Radius of ice cream cone (r) = 2 cm

Height of ice cream cone (h) = 7 cm

Volume of ice cream cone

$$= \frac{1}{3}\pi r^2 h = \left(\frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 7\right) \text{ cm}^3$$

:. Number of ice cream cones

$$= \frac{\text{Volume of cubical ice cream brick}}{\text{Volume of each ice cream cone}} = \frac{22 \times 22 \times 22}{\frac{1}{3} \times \frac{22}{7} \times (2)^2 \times 7}$$

= 363

∴ 363 children will get the ice cream cones.

26. We have, PQ = PR

[: Length of tangents drawn from an external point are equal]

 \therefore $\angle PQR = \angle PRQ$ [Angles opposite to equal sides of a triangle are equal] ...(i)

In $\triangle PQR$, $\angle P + \angle PQR + \angle PRQ = 180^{\circ}$

$$\Rightarrow$$
 30° + $\angle PQR$ + $\angle PQR$ = 180° [Using (i)]

 $\Rightarrow 2\angle PQR = 150^{\circ} \Rightarrow \angle PQR = 75^{\circ}$

Now,
$$\angle QSR = 75^{\circ}$$
 [Given]

And $\angle PQR = \angle QRS = 75^{\circ}$

[: Alternate interior angles, as RS||PQ|]

In ΔRQS ,

 $\angle RQS + \angle RSQ + \angle SRQ = 180^{\circ}$ [By angle sum property]

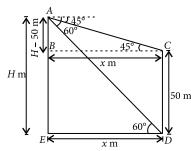
$$\Rightarrow$$
 $\angle RQS + 75^{\circ} + 75^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle RQS = 180^{\circ} - 150^{\circ} = 30^{\circ}$

27. (a) Let the height of tower, AE = H m

The horizontal distance between tower and building = x m In $\triangle ABC$,

$$\frac{H-50}{x} = \tan 45^{\circ} \implies x = H-50 \qquad ...(i)$$



In
$$\triangle AED$$
, $\frac{H}{x} = \tan 60^{\circ} \implies x = \frac{H}{\sqrt{3}}$...(ii)

From (i) and (ii),
$$H - 50 = \frac{H}{\sqrt{3}} \implies H - \frac{H}{\sqrt{3}} = 50$$

$$\Rightarrow H = \frac{50\sqrt{3}}{(\sqrt{3} - 1)} = \frac{50(1.73)}{0.73} = 118.49$$

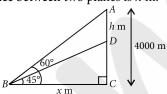
$$\therefore$$
 Height of tower = 118.49 m

Distance between tower and building = $\frac{118.49}{\sqrt{3}}$

$$=\frac{118.49}{1.73}$$
 = 68.49 m

OR

(b) Let one aeroplane be at *A* and second be at *D* such that vertical distance between two planes is h m.



In $\triangle ABC$, $\tan 60^\circ = \frac{AC}{RC}$

$$\Rightarrow \sqrt{3} = \frac{4000}{x} \Rightarrow x = \frac{4000}{\sqrt{3}}$$
 ...(i)

In $\triangle DBC$, $\tan 45^\circ = \frac{DC}{RC}$

$$\Rightarrow 1 = \frac{4000 - h}{x} \Rightarrow x = 4000 - h$$

$$\Rightarrow \frac{4000}{\sqrt{3}} = 4000 - h$$
 [Using (i)]

$$\Rightarrow h = 4000 - \frac{4000}{\sqrt{3}} = 4000 - \frac{4000\sqrt{3}}{3}$$
$$= \frac{12000 - 6920}{3} = \frac{5080}{3} = 1693.33$$

Hence, vertical distance between the aeroplanes at that instant was 1693.33 m.

28. Given, points are P(2, 2), A(-2, k) and B(-2k, -3).

Since, *P* is equidistant from *A* and *B*

$$\therefore AP = BP \implies AP^2 = BP^2$$

$$\Rightarrow (2+2)^2 + (2-k)^2 = (2+2k)^2 + (2+3)^2$$

$$\Rightarrow 16+4+k^2-4k=4+4k^2+8k+25$$

$$\Rightarrow 16 + 4 + k^2 - 4k = 4 + 4k^2 + 8k + 25$$

$$\Rightarrow$$
 $3k^2 + 12k + 9 = 0 \Rightarrow k^2 + 4k + 3 = 0$

$$\Rightarrow$$
 $k^2 + 3k + k + 3 = 0$

$$\Rightarrow$$
 $k(k+3)+1(k+3)=0$

$$\Rightarrow$$
 $(k+1)(k+3) = 0 \Rightarrow k = -1 \text{ or } k = -3$

For
$$k = -1$$
, $AP = \sqrt{(2+2)^2 + (2+1)^2}$

$$=\sqrt{16+9} = \sqrt{25} = 5$$
 units

For
$$k = -3$$
, $AP = \sqrt{(2+2)^2 + (2+3)^2}$

$$=\sqrt{16+25} = \sqrt{41}$$
 units

29. (a) Let the tens digit of a number be a and ones digit be b.

The number be 10a + b.

According to question,

$$\frac{10a+b}{a+b} = 7 \implies 10a+b = 7a+7b$$

$$\implies 3a-6b=0 \implies a-2b=0$$

and
$$10a + b - 27 = 10b + a$$

$$\Rightarrow$$
 $10a - a + b - 10b = 27$

$$\Rightarrow$$
 9a - 9b = 27 \Rightarrow a - b = 3 ...(ii)

...(i)

Subtracting (i) from (ii), we get b = 3

From (ii), $a - 3 = 3 \implies a = 6$

Required number is $10 \times 6 + 3 = 63$

(b) Let xl of mixture be taken from 1^{st} vessel and yl of the mixture be taken from 2nd vessel and kept in 3rd vessel so that (x + y)l of the mixture in third vessel may contains 25 lof milk and 10 l of water.

A mixture of x l from 1st vessel contains $\frac{24}{30}x l = \frac{4}{5}x l$ of

milk and $\frac{x}{5}l$ of water. And a mixture of y l from 2nd vessel

contains $\frac{3y}{5}l$ of milk and $\frac{2y}{5}l$ of water.

$$\therefore \quad \frac{4}{5}x + \frac{3}{5}y = 25 \implies 4x + 3y = 125 \qquad ...(i)$$

and
$$\frac{x}{5} + \frac{2}{5}y = 10 \implies x + 2y = 50$$
 ...(ii

Multiplying (ii) by 4 and then subtracting (i) from it,

$$4x + 8y - 4x - 3y = 200 - 125 \implies 5y = 75 \implies y = 15$$

From (ii),

$$x + 2 \times 15 = 50 \implies x = 50 - 30 \implies x = 20$$

30. When two dice are thrown together, total number of possible outcomes = 36.

Then sum of numbers on dice is greater than 5 but not more than 10 for:

$$\{(1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 1), (6, 2), (6, 3), (6, 4)\}$$

- ... Number of favourable outcomes = 23
- \therefore Required probability = $\frac{23}{36}$
- 31. The prime factorisation of 40, 42, 45 is $40 = 2 \times 2 \times 2 \times 5 = 2^3 \times 5^1$

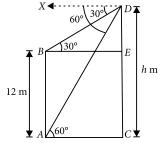
$$42 = 2 \times 3 \times 7$$

$$45 = 3 \times 3 \times 5 = 3^2 \times 5$$

$$\therefore LCM (40, 42, 45) = 2^3 \times 3^2 \times 5^1 \times 7^1$$
$$= 8 \times 9 \times 5 \times 7 = 2520$$

:. Required distance = 2520 cm or 0.0252 km.

32.



Let AB be the building and CD be the multi-storeyed building of height h m.

Here, AB = CE = 12 m and DE = (h - 12) m

In
$$\triangle ACD$$
, $\tan 60^{\circ} = \frac{CD}{AC}$

$$\Rightarrow \sqrt{3} = \frac{h}{AC} \Rightarrow AC = \frac{h}{\sqrt{3}}$$

In $\triangle BDE$, $\tan 30^{\circ} = \frac{DE}{BE}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{(h-12)}{BE} \Rightarrow BE = (h-12)\sqrt{3} \text{ m}$$

$$\Rightarrow \frac{h}{\sqrt{3}} = (h - 12)\sqrt{3} \qquad (\because AC = BE)$$

$$\Rightarrow h = 3(h - 12) \Rightarrow h = 3h - 36 \Rightarrow -2h = -36 \Rightarrow h = 18$$
$$AC = \frac{18}{\sqrt{3}} = 6\sqrt{3}$$

Thus, the height of the multi-storeyed building is 18 m. and distance between both buildings is $6\sqrt{3}$ m.

33. (a) The frequency distribution table for the given data can be drawn as:

Class	Modified class	(x_i)	(f_i)	$f_i x_i$
25-29	24.5-29.5	27	4	108
30-34	29.5-34.5	32	14	448
35-39	34.5-39.5	37	22	814
40-44	39.5-44.5	42	16	672
45-49	44.5-49.5	47	6	282
50-54	49.5-54.5	52	5	260
55-59	54.5-59.5	57	3	171
			$\Sigma f_i = 70$	$\Sigma f_i x_i = 2755$

.. Mean age =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{2755}{70} = 39.35 \text{ years}$$

OR

(b) Here, the frequency table is given in discontinuous form. So, we first transform it into continuous form by subtracting and adding, 0.5 from the lower and to upper limits respectively. Transforming the given table into continuous form and preparing the cumulative frequency table, we get

Weekly wages (in ₹)	Number of workers (f _i)	Cumulative frequency (c.f.)
59.5-69.5	5	5
69.5-79.5	15	5 + 15 = 20
79.5-89.5	20	20 + 20 = 40
89.5-99.5	30	40 + 30 = 70
99.5-109.5	20	70 + 20 = 90
109.5-119.5	8	90 + 8 = 98
Total	$\Sigma f_i = 98$	

We have, $n = 98 \Rightarrow n/2 = 49$

The cumulative frequency just greater than n/2 *i.e.*, 49 is 70 and the corresponding class is 89.5–99.5. So, 89.5–99.5 is the median class.

$$l = 89.5, h = 10, f = 30 \text{ and } c.f. = 40$$

Now, median =
$$l + \left(\frac{n}{2} - c.f.\right) \times h = 89.5 + \left(\frac{49 - 40}{30}\right) \times 10$$

= $89.5 + 3 = 92.5$

34. (a) Let n be the number of terms of the given A.P., whose sum is 116.

Here,
$$a = 25$$
, $d = 22 - 25 = -3$

We know that,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow 116 = \frac{n}{2} [2 \times 25 + (n-1)(-3)]$$
 (Given)

$$\Rightarrow 232 = n [50 + 3 - 3n] \Rightarrow n [53 - 3n] = 232$$

$$\Rightarrow$$
 $3n^2 - 53n + 232 = 0 \Rightarrow 3n^2 - 24n - 29n + 232 = 0$

$$\Rightarrow$$
 3n (n - 8) - 29 (n - 8) = 0

$$\Rightarrow$$
 $(n-8)(3n-29)=0 \Rightarrow n=8 \text{ or } n=\frac{29}{3}$

So,
$$n = 8$$
 (: $n = \frac{29}{3}$ is not possible)

Thus, 116 is the sum of 8 terms of the A.P.

The last term is given by

$$a_8 = a + (8 - 1)d = a + 7d = 25 + 7 \times (-3) = 4$$

OR

(b) Let *a* be the first term and *d* be the common difference of the A.P.

 n^{th} term of the A.P. is $a_n = a + (n-1)d$

Now, we have $a_4 + a_8 = 24$

$$\Rightarrow a + 3d + a + 7d = 24$$

$$\Rightarrow$$
 2a + 10d = 24 \Rightarrow a + 5d = 12 ...(i)

Also, $a_6 + a_{10} = 44$

$$\Rightarrow a + 5d + a + 9d = 44 \Rightarrow 2a + 14d = 44$$

$$\Rightarrow a + 7d = 22$$
 ...(ii)

On subtracting (i) from (ii), we get

$$2d = 10 \implies d = 5$$

On substituting the value of d in (i), we get

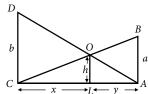
$$a + 5(5) = 12 \implies a = -13$$

Thus, the A.P. is $-13, -8, -3, \dots$

.. Sum of first 10 terms,
$$S_{10} = \frac{10}{2} [2a + (10 - 1)d]$$

$$= 5[2(-13) + 9 \times 5] = 5(-26 + 45) = 5 \times 19 = 95$$

35. Let AB and CD be two poles of heights a metres and b metres respectively such that the poles are p metres apart *i.e.*, AC = p metres. Suppose the lines AD and BC meet at O such that OL = h metres.



Let CL = x and LA = y. Then x + y = pIn $\triangle ABC$ and $\triangle LOC$, we have

$$\angle CAB = \angle CLO$$

[Each equal to 90°] [Common]

$$\angle ACB = \angle LCO$$

 $\Delta CAB \sim \Delta CLO$

[By AA similarity]

$$\Rightarrow \frac{CA}{CL} = \frac{AB}{LO} \Rightarrow \frac{p}{x} = \frac{a}{h} \Rightarrow x = \frac{ph}{a}$$

In $\triangle ALO$ and $\triangle ACD$, we have

$$\angle ALO = \angle ACD$$

[Each equal to 90°]

...(i)

$$\angle LAO = \angle CAD$$

[Common]

$$\therefore$$
 $\triangle ALO \sim \triangle ACD$

[By AA similarity]

$$\Rightarrow \frac{AL}{AC} = \frac{OL}{DC} \Rightarrow \frac{y}{p} = \frac{h}{b} \Rightarrow y = \frac{ph}{b} \qquad ...(ii)$$

From (i) and (ii), we get

$$x + y = \frac{ph}{a} + \frac{ph}{b} \implies p = ph\left(\frac{1}{a} + \frac{1}{b}\right)$$

$$\Rightarrow$$
 $1 = h\left(\frac{a+b}{ab}\right) \Rightarrow h = \frac{ab}{a+b}$ metres

Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{ab}{a+b}$ metres.

36. (i) Product of zeroes =
$$\frac{8\sqrt{3}}{\sqrt{3}}$$
 = 8

(ii) Sum of zeroes =
$$\frac{-(-14)}{\sqrt{3}} = \frac{14}{\sqrt{3}}$$

(iii) (a) We have,
$$10x^2 - x - 3$$

$$= 10x^2 - 6x + 5x - 3 = (2x + 1)(5x - 3)$$

So, the value of $10x^2 - x - 3$ is zero when 2x + 1 = 0

or 5x - 3 = 0

i.e.,
$$x = \frac{-1}{2} \text{ or } \frac{3}{5}$$

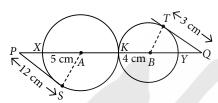
Thus, the zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$.

OR

- (b) Required polynomial = $x^2 0.x + 1 = x^2 + 1$
- **37.** Join *AS* and *BT*.

Here,
$$AS = 5$$
 cm, $BT = 4$ cm

[: Radii of circles]



- (i) Since, radius at point of contact is perpendicular to tangent.
- :. By Pythagoras theorem, we have

$$PA = \sqrt{PS^2 + AS^2} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13 \text{ cm}$$

- (ii) PK = PA + AK = 13 + 5 = 18 cm
- (iii) (a) By Pythagoras theorem, we have

$$BQ = \sqrt{TQ^2 + BT^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ cm}$$

OR

- (b) QY = BQ BY = 5 4 = 1 cm
- **38.** (i) Lateral surface area of *Hermika* which is cubical in shape = $4a^2 = 4 \times (8)^2 = 256 \text{ m}^2$
- (ii) Given, radius of *Pradakshina Path* (r) = 25 m
- \therefore Perimeter of path = $2\pi r$

$$=\left(2\times\frac{22}{7}\times25\right)$$
 m

- $\therefore \text{ Distance covered by priest} = 14 \times 2 \times \frac{22}{7} \times 25 = 2200 \text{ m}$
- (iii) (a) Diameter of cylindrical base = 42 m
- :. Radius of cylindrical base (r) = 21 mHeight of cylindrical base (h) = 12 m

$$\therefore \text{ Number of bricks used} = \frac{\frac{22}{7} \times 21 \times 21 \times 12}{0.01} = 1663200$$

- (b) Given, diameter of *Anda* which is hemispherical in shape = 42 m
- \Rightarrow Radius of Anda (r) = 21 m
- :. Volume of Anda = $\frac{2}{3}\pi r^3 = \frac{2}{3} \times \frac{22}{7} \times 21 \times 21 \times 21$ = $44 \times 21 \times 21 = 19404 \text{ m}^3$

 \bigcirc